
Chapter 8
Quantile Regression: Analyzing Changes
in Distributions Instead of Means

Stephen R. Porter

Introduction

For the past several decades, ordinary least squares (OLS) has been the workhorse
of quantitative postsecondary research. OLS has several features that make it
especially appealing to applied researchers, such as its ability to control for multiple
independent variables, its ease of estimation and interpretation, and its robustness
to violations of underlying assumptions. Open any education journal featuring
empirical articles on postsecondary topics, and you will find numerous papers using
OLS, or one of its variants, such as logistic regression, instrumental variables,
hierarchical linear models, or fixed effects models.

As applied researchers, we rarely think deeply about what a regression coefficient
tells us; we tend to assume that it just tells us the effect of x on y, ceteris paribus.
From a technical perspective, however, this is not exactly correct. A regression
coefficient tells us the effect of x on the mean of y controlling for other x’s, not
just “y”. This may seem like a subtle distinction, but it is not, as a simple example
demonstrates.

Access and completion are two major areas of focus in postsecondary research,
and interventions that aim to prepare students for college success, such as summer
bridge programs and developmental education classes, are widely used across the
country. Suppose we are studying a program to increase incoming students’ math
skills, a common deficit area for new students. We are interested in the effect of the
program on math performance; in other words, does participation in the program
increase math proficiency? One approach to assessing the effect of the program
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Fig. 8.1 Hypothetical math score distributions with and without remediation

would be estimating a regression model with performance on a math exam as the
dependent variable, a dummy variable indicating program participation as the main
independent variable of interest, and a set of control variables (assume that these
control variables are such that we are not worried about omitted variable bias).

A positive and statistically significant coefficient on the dummy variable would
tell us that performance was larger for students participating in the program.
Figure 8.1 illustrates this possibility. Two hypothetical distributions are shown,
for participants (dashed line) and non-participants (solid line). As can be seen,
participation in the program shifts test scores for participating students to the
right; that is, remediation appears to increase math proficiency. For the sake of
this example, assume the increase is 10 points on a 100-point scale. Based on
our regression results, we would conclude that the program was successful in
increasing math proficiency. Technically, however, we can only conclude that
program participation had an effect on the mean of the test score distribution; we
can say nothing about other points of the distribution.

Why is this potentially problematic? We can consider three alternative scenarios,
depending upon how the remediation program affects different individuals. First,
we can imagine a scenario in which the distribution for the treated shifts such that
there is still a 10-point increase at the mean, but the program has the strongest effect
for students at the lower end of the distribution, increasing their test scores by 20
points. This is consistent with the idea that math remediation will have the strongest
effect for students who have deficits and will likely struggle with college-level math,
and little effect for those highly proficient. Second, the opposite could occur, with
no increase at the low end, a 10-point increase at the mean, and a 20-point increase
at the high end of the distribution. Here, math remediation helps those students
already comfortable and successful at math, with little effect at the low end of the
distribution. This is consistent with the idea that remediation helps students who are
already proficient at math, but does little for non-proficient students. Third, aspects
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of both trends could occur: the intervention could help the average student (with a
10-point increase in scores at the mean), but with no changes in proficiency at the
high and low ends of the distribution.

From a policy perspective, distinguishing between the four possibilities is
important. Does offering additional math instruction raise all boats, help those
most in need, help those who need it least, or just help the average student? Most
postsecondary researchers and administrators would agree that an intervention that
largely helps students already proficient at math is not a wise use of funds. Yet
using OLS to study math outcomes would not tell us whether this was happening,
only whether students at the mean were experiencing an increase in proficiency.
Indeed, in using OLS to analyze the four scenarios, we would reach the exact same
conclusion, even though the math intervention is having very different effects on
students at other parts of the distribution in each scenario.

Quantile regression is one approach to analyzing changes in distributions that
is becoming increasingly popular with applied researchers. As with OLS, quantile
regression estimates the effect of an independent variable on an outcome, while
allowing for covariates as controls. Unlike OLS, quantile regression provides
estimates of these effects at different points of the distribution of y, such as the 5th
percentile, 25th percentile, 95th percentile, etc. Quantile regression thus allows the
researcher to understand how an independent variable affects the entire distribution
of an outcome, rather than just the average. In addition, these models are easily
estimated by most statistical packages and can be widely used by postsecondary
researchers.

This chapter reviews the two main types of quantile regression models used
by researchers, the conditional and unconditional quantile regression models. The
latter is more widely used by researchers, because it focuses on changes to the
unconditional distribution of the dependent variable. After reviewing estimation,
interpretation, and sensitivity analyses for unconditional quantile regression models,
I discuss and demonstrate the use of instrumental variables within the quantile
regression context.

Why Use Quantile Regression?

Due to the tremendous increase in computing power in recent years, a wide variety
of advanced statistical techniques are now available at the touch of a drop-down
screen. Researchers can feel a bit overwhelmed at the dizzying array of choices
for analyzing their data, and skeptical of new approaches, which often tend to be
seen as faddish at best. Quantile regression should not be viewed as a fad, but
rather as a more informative approach to analyzing educational data than more
familiar techniques such as OLS. Indeed, the technique dates to the late 1970s, and
has been used in the field of economics for many years. Given recent advances in
estimation and interpretation of quantile regression models, including the ability to
deal with endogenous regressors, the technique will soon be commonplace. Quantile
regression is generally seen as having two advantages over OLS.
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Table 8.1 Sensitivity of OLS estimates to outliers on Y

Sample unchanged One male score changed to 1,000

OLS CQR OLS CQR

Female 4.870 5.000 �5.383 5.000

(1.304)��� (2.080)�� (9.622) (2.080)��

Intercept 50.121 52.000 60.374 52.000

(.963)��� (1.535)��� (7.103)��� (1.535)���

Note: Cell entries are coefficients, with standard errors in parentheses
**p < 0:05; ***p < 0:01

First, an advantage of quantile regression is its insensitivity to outliers on y

(Davino, Furno, & Vistocco, 2014; Fröhlich & Melly, 2010). Recalling the formulas
for the mean and median, this makes intuitive sense. If we analyzed a sample of
incomes and added a single billionaire to the sample, the mean would change quite a
bit, because the billionaire’s income is used explicitly in the calculation of the mean.
Repeating the process but using the median instead, the addition of the billionaire
would simply shift the value of the median from the income of the person at the 50th
percentile to the next highest income in the distribution, resulting in a small change
in the median. Or, if the next highest income were identical to the median, result in
no change at all.

To illustrate, Table 8.1 shows OLS and conditional quantile regression estimates
for a bivariate model using gender to predict performance on a writing exam, based
on a sample dataset (n = 200) from the High School and Beyond survey.1 The first
two columns use the sample dataset with no changes to the observations. Both OLS
and conditional quantile regression yield similar results, with females scoring about
five points higher than males (note that this similarity is not surprising, given that
the mean and median of Y are 53 and 54, respectively).

The highest writing scores in the sample are 67 points, and there are two males in
the dataset with these scores. The last two columns of the table demonstrate how the
model coefficients change when the writing score for one of these males is changed
from 67 points to 1,000 points. As we can see, the OLS estimates change drastically.
The predicted writing score for males increases from 50 to 60, and the gender
difference switches direction, with females now scoring five points lower than
males, as opposed to higher. The conditional quantile regression estimates, however,
remain unchanged. The one male whose test score increased was already one of the
two highest-scoring males in the dataset, so drastically increasing his score had no
effect on the estimates of the effect of gender on the median of test scores. As with
estimation of a simple median, increasing scores for observations above the median
leaves the median (conditional quantile regression) estimates unchanged.

A second advantage of quantile regression, however, is its ability to allow us to
see how the entire distribution of y changes when x changes, rather than just seeing

1This example is based on the discussion at http://www.ats.ucla.edu/stat/stata/faq/quantreg.htm

http://www.ats.ucla.edu/stat/stata/faq/quantreg.htm
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how the mean changes. Some examples from the literature illustrate its advantages
over OLS: estimating the effect of class size on student achievement, and estimating
the effect of spending on college graduation rates.

Providing additional funding to school districts is one approach to increasing K-
12 student achievement, but how these additional funds should be allocated is not at
all clear. For example, a district could increase salaries to attract more experienced
teachers, or it could maintain current salary levels and use the funds to hire
more teachers in order to reduce average class size. Project STAR (the Tennessee
Student/Teacher Achievement Ratio experiment) randomly assigned students in
public elementary schools to small classrooms (13–17 students), regular classrooms
(22–25 students), and regular classrooms with the addition of a full-time aide.
Mueller (2013) uses data from the experiment to analyze the effect of class size on
math and reading test scores. Conditioning on teacher experience, the OLS estimates
indicate that assignment to a small classroom increases math and reading test scores
by about .15 standard deviations (see his Table 2, p. 48); these are the effects of
small class size at the mean of the test score distributions. The quantile regression
estimates, however, tell a different story. Small class size increases test scores about
.10 standard deviations at the lowest decile of the math and reading distributions,
with the effects almost doubling in size at higher points along the distributions.
Small class size, in other words, increases student achievement for all students, but it
also increases inequality, with smaller gains at the low ends of the math and reading
distributions.

Funding issues also dominate much of the discussion in higher education,
especially in terms of recent proposals to develop a national rating system for
colleges and universities based on how well they graduate their students. While
previous research indicates that expenditures per student are positively associated
with higher graduation rates, less is known about the effects of specific categories
of expenditures, such as spending on instruction. Webber and Ehrenberg (2010)
use IPEDS Finance and Completions data to estimate and compare the effect of
instructional, academic support, research, and student services expenditures on
institutional 6-year graduation rates. OLS estimates suggest that increasing student
services expenditures by $100 per student would increase graduation rates by .2
percentage points (e.g., from 80 to 80.2 %), while the same amount for instructional
expenditures would increase graduation rates by only .06 percentage points (their
Table 3, p. 953). The quantile regression estimates reveal that the effect of
expenditures varies across the distribution of graduation rates (their Table 4, p. 954).
The effect of a $100 increase in student services expenditures, for example, is largest
at the bottom half of the graduation rate distribution, about .6 percentage points, and
declines rapidly to zero from the 50th percentile to the 90th percentile. The effect of
instructional expenditures is largest between the 20th and 80th percentiles, with no
effect at the top and bottom of the distribution. These results suggest that institutions
with low graduation rates would benefit most from increasing expenditures on
student services, while increasing expenditures in both areas would achieve little
for institutions with very high graduation rates.
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As these examples demonstrate, understanding how an independent variable
affects an outcome can differ depending on whether the researcher uses OLS or
quantile regression. The former only allows us to understand the effect of an
independent variable at the mean of an outcome, while the latter allows to observe
how the effect varies at different quantiles of the distribution. From an applied
researcher’s perspective, it is precisely these varying effects in which we are most
interested, especially in terms of implementing good policies. Does a treatment
affect all students equally, or only some students along the distribution of interest?
If the treatment shows positive effects, does it also increase inequality by having the
weakest effects for those students at one end of the distribution? Quantile regression
can help us begin to answer these important and policy-relevant questions, while
OLS cannot.

Conditional Quantile Regression

Conditional quantile regression has been used by researchers for several decades.
While the interpretation of the results is somewhat similar to OLS, the estimation
approach is not. As Koenker and Hallock (2001, p. 145) note,

Quantiles seem inseparably linked to the operations of ordering and sorting the sample
observations that are usually used to define them. So it comes as a mild surprise to observe
that we can define the quantiles through a simple alternative expedient as an optimization
problem.

The optimization approach to finding a quantile q (such as the median) can be
achieved by using the following equation, and finding the value of ˇ that yields
the minimum value for a group of observations y:

NX

i Wyi �ˇ

qjyi � ˇj C
NX

i Wyi <ˇ

.1 � q/jyi � ˇj: (8.1)

Suppose we have three observations in a sample with the values of 1, 2 and 3,
and wish to know the median. The median is obviously 2 by inspection, and we can
use Eq. 8.1 instead to estimate the median via optimization. Beginning with the first
observation as a possible answer for the median, we use only the first part of Eq. 8.1,
as there are no values of y less than 1 in this sample,

NX

i Wyi �1

:5jyi � 1j C
NX

i Wyi <1

.1 � :5/jyi � 1j

NX

i Wyi �1

:5jyi � 1j

:5j1 � 1j C :5j2 � 1j C :5j3 � 1j D 1:5
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while for the second observation,

NX

i Wyi �2

:5jyi � 2j C
NX

i Wyi <2

.1 � :5/jyi � 2j

:5j2 � 2j C :5j3 � 2j C :5j1 � 2j D 1

and for the third observation,

NX

i Wyi �3

:5jyi � 3j C
NX

i Wyi <3

.1 � :5/jyi � 3j

:5j3 � 3j C :5j1 � 3j C :5j2 � 3j D 1:5:

Of the three observations, the value of 2 minimizes Eq. 8.1, and we can conclude
that it is the value of the 50th quantile, or median.

While this may seem like an overly complicated solution to the relatively simple
problem of finding the median of y, this approach can be used to find the quantile
regression estimator (Cameron & Trivedi, 2005), in that minimizing

NX

i Wyi �x0

i
ˇ

qjyi � x0
i ˇj C

NX

i Wyi <x0

i
ˇ

.1 � q/jyi � x0
i ˇj (8.2)

yields the quantile regression coefficient ˇ, where x0
i

and ˇ indicate a matrix of
independent variables and a vector of quantile regression coefficients. Note that the
expressions within the absolute value symbols are deviations, so that this approach
can also be viewed as a least absolute deviations estimator (as opposed to OLS,
which uses squares instead of absolute deviations).

An alternative version that is often cited in articles is

arg min
NX

iD1

�� .yi � xi ˇ/ (8.3)

where � is a particular quantile, �� is an absolute value function �� .u/ D u � .� �
1.u < 0// and 1.u < 0/ is an indicator function taking a value of 1 if u < 0, 0
otherwise. This simply means that Eq. 8.3 expands into two parts

arg min
X

� � .yi � xi ˇ/ when yi � xi ˇ > 0 and

arg min
X

.� � 1/ � .yi � xi ˇ/ when yi � xi ˇ < 0

based on the sign of yi � xi ˇ.
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More specifically, the approach outlined above is known as the conditional
quantile regression approach to studying changes in distributions. In terms of
estimation, conditional quantile regression takes a different approach than OLS. If
we view the OLS regression model as a mathematical function, we can find the
value of ˇ that minimizes the function by using calculus to find the derivative.
Unlike OLS, the conditional quantile regression function cannot be differentiated
and instead is estimated via linear programming methods (Cameron & Trivedi,
2005). Linear programming is “a subset of mathematical programming facing the
efficient allocation of limited resources to known activities with the objective of
meeting a desired goal, such as minimizing cost or maximizing profit” (Davino
et al., 2014, p. 23). This approach, and related optimization techniques, are widely
used for many practical applications, such as determining the optimal driving route
between two different locations on a map.

Linear programming typically consists of a series of equations that can be
solved to find the solution set. The most common approach is the simplex method,
which uses an iterative process to find a solution. Similar to maximum likelihood
estimation, multiple solutions are tested until the software fails to find a better
solution. This is why the statistical output for conditional quantile regression
resembles the output for logistic regression, listing the iterations that have been used
to reach a solution. Conditional quantile regression, however, focuses on minimizing
the absolute deviations (as seen in Eq. 8.2), not maximizing the likelihood.

Conditional quantile regression models can be estimated with the following
statistical packages:

• Stata uses the qreg command, but the estimated standard errors assume
homoskedasticity. The vce(robust) option should be used to ensure the correct
standard errors.

• SAS uses the quantreg procedure (Chen, 2005).
• R has the package quantreg (http://cran.r-project.org/web/packages/quantreg/

index.html); SPSS version 17 allows SPSS users to invoke R packages within
SPSS.

Interpretation

One of the most important distinctions to understand when estimating quantile
regression models is the difference in interpretation between conditional ver-
sus unconditional regression models (described below). For conditional quantile
regression, interpretation of the coefficients is in relation to the quantiles of the
distributions defined by the covariates (the conditional distribution), rather than the
unconditional distribution of y.

Continuing with the developmental math example, suppose we estimated a
conditional quantile regression model at the median with math proficiency as the
dependent variable, a developmental math dummy variable, and a dummy variable

http://cran.r-project.org/web/packages/quantreg/index.html
http://cran.r-project.org/web/packages/quantreg/index.html
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for gender as regressors. The coefficient for the developmental math dummy
variable is not the effect of developmental math at the median of the test score
distribution. Instead, it can be thought of as the average of the effect at the median
of the distribution for males and at the median of the distribution for females. Why is
this problematic? Suppose that females score higher on the test than males, such that
the median female score is 85 whereas the median male score is 70. The conditional
quantile regression coefficients are effects at these medians, which differ quite a bit.
So we would interpret the effect of the program for one group of students scoring
at 85 (females), as well as for another scoring at 70 (males). Typically, however, we
would like to know the effect at the median of the unconditional distribution; that
is, what is the effect for students who perform at the median of the overall score
distribution, not for students who score at the median of groups defined by whatever
covariates we include in the model (in this case, developmental math and gender).

This conditional definition of effect can be difficult to interpret in many applied
settings. The previous example had one treatment variable and only one control
variable; with additional control variables, interpretation becomes even more com-
plex. More importantly, this interpretation is typically not what most educational
researchers seek. Just as OLS yields the effect of a variable at the mean of y, we
also wish to know the effect at other quantiles of y, not quantiles of y defined within
subgroups. The main issue here is that inclusion of control variables in a conditional
regression model is necessary to deal with selection bias, just as in the case of
OLS, yet inclusion of these covariates changes the interpretation of the quantiles.
Moreover, as additional covariates are included, the interpretation of the quantiles
changes, making comparisons across different model specifications problematic.

The growing consensus in the literature is that many researchers have inadver-
tently misused conditional quantile regression for many years, by interpreting the
results as if they came from an unconditional quantile regression model. In other
words, they have interpreted their coefficients as if they were the effect on the
quantile of y, rather than quantiles of y defined within groups based on their set
of covariates.

Two very recent examples from the literature demonstrate how conditional
quantile regression has been misapplied. Maclean, Webber, and Marti (2014)
estimate a state-level panel model to understand the effect of state cigarette taxes
on cigarette consumption. Cigarette taxes have been an important public health tool
used to reduce smoking, but the effects of tax increases in the literature are not clear,
especially as previous research has tended to focus on the effect at the mean.

Some previous researchers in this area have used conditional quantile regression
to study cigarette taxes, and Maclean et al. (2014) illustrate the drawbacks of this
method with a thought experiment. Suppose the researcher estimated a conditional
quantile regression model using only a set of dummy variables for each state. This
model

. . . effectively yields an average of the treatment effects for observations at the, say,
10th quantile of the 51 state-specific smoking distributions, some of which may deviate
substantially from the 10th quantile in the national distribution of smokers. For example, the
10th quantile smoker in Kentucky rises to the 20th quantile in the national distribution, while
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the 10th quantile California smoker falls to the 6th quantile [of the national distribution].
Thus, [conditional quantile regression] at the 10th quantile produces an estimate of cigarette
tax increases on smokers who smoke 30 cigarettes per month in California, 150 cigarettes
per month in Kentucky, and many values in between for other states.

For most applications, we would not want to know the effect of taxes on smokers
at differing absolute levels of smoking (e.g., 30 cigarettes per month, 150 cigarettes
per month, etc.), even though these levels of smoking represent the 10th percentile
within each state. Instead, we would want to know the effect at the 10th percentile
of the national distribution, 60 cigarettes per month.

Budig and Hodges (2010) use conditional quantile regression to analyze wages
for females in an effort to determine the “motherhood penalty” – the loss in
compensation that women experience if they have children. They find that mothers
at the low end of the wage distribution experience larger penalties than higher
income females. In a critique, Killewald and Bearak (2014) point out that their
interpretation of the penalty from their conditional quantile regression model is
actually for the unconditional distribution of wages. Their thought experiment
is a simple conditional quantile regression model with motherhood and level of
education as covariates. The estimates of the motherhood penalty from this model
are not the estimates for workers at different quantiles of wages. Instead, they are
the estimates of the motherhood penalty at different quantiles of wages within
each education group. The problem lies in the fact that a specific quantile wage
for college-educated women will be much larger than the same quantile wage
for high-school dropouts. In other words, the 50th quantile wage for college-
educated women will be much higher than the 50th quantile wage for high-school
dropouts.

At this point, it may seem somewhat confusing that the interpretation changes
when covariates are added; doesn’t the same thing occur with OLS? When
interpreting an OLS coefficient, our overall interpretation may change slightly as we
add covariates (would we say, for example, “controlling for independent variables A,
B and C” instead of “controlling for independent variables A and B”), but regardless
of the number of control variables, the interpretation of an OLS coefficient is always
the effect of x on the mean of y. With conditional quantile regression, we lose this
simple and clear interpretation of the regression coefficient.

From the perspective of many researchers, conditional quantile regression may
not seem very useful, because as control variables are added to the equation to
deal with selection, the quantiles and thus the interpretation of the coefficients
change. There are, however, other uses of these models besides the estimation of
treatment effects via covariate controls. One of the most common in K-12 is the
use of conditional quantile regression to track student growth in standardized test
scores.

Standardized tests are ubiquitous in K-12, and one approach to accountability is
providing parents with their child’s test score. Depending on the difficulty of the
test, the raw score may not be useful. Suppose a student scores an 80 on a 100-point
test. If many other students scored above 80, then this student did not perform
very well. Conversely, if many other students scored below 80, then the student
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performed well. The interpretation of issue of absolute versus relative performance
naturally leads to the use of percentiles in reporting student scores, so that each
student is scored relative to other students who took the test.

At the state-level, the educational accountability movement has pushed for
measurement and reporting of student test performance and growth over time. One
approach uses past and present student test results and conditional quantile regres-
sion to estimate student growth scores, referred to as “student growth percentiles”;
a dozen states have adopted it for reporting purposes (Castellano & Ho, 2013a).
Suppose we estimate a model using conditional quantile regression, in which a
student’s test score in a grade is regressed on his test score from the previous grade.
We can think of the resulting predicted quantile for the student as where they scored
on the current grade’s test, not in relation to all test-takers across the state, but in
relation to all test takers who scored the same as the student in the previous grade.
Higher quantiles are then interpreted that a student is scoring higher than his or her
academic peers, where academic peers are defined by those other students achieving
the same test score as the student. Typically these models use several years of prior
testing data, so the comparison group is students with similar score histories (see
Castellano and Ho (2013b) for an accessible discussion of this and other methods
for calculating student growth).

Note that because of the use of conditional quantiles, scoring higher than a
majority of your peers using these models does not mean that student growth has
actually occurred. Suppose that for some reason students tended to do poorly this
year in relation to last year (e.g., experienced learning loss). If a particular student’s
loss is much less relative to his peers, then his student growth percentile would be
high (implying growth), even though an analysis of absolute test scores would reveal
a loss in learning.

As this review makes clear, estimation and correct interpretation of conditional
quantiles can be a tricky business. Thus, many researchers have turned to uncondi-
tional quantile regression models.

Unconditional Quantile Regression Assuming Exogeneity

Given that the interpretation of conditional quantile regression coefficients depends
on the group of covariates used in the model, and that most researchers are
instead interested in the effects on the unconditional distribution of y, uncon-
ditional quantile regression (Firpo, Fortin, & Lemieux, 2009) is becoming the
popular choice among applied researchers. Unconditional quantile regression is
based on a transformation of the dependent variable into the recentered influence
function (RIF)

RIF.yI qt / D q� C � � 1fy � q� g
fY .q� /

; (8.4)
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where � indicates a specific quantile (say the 40th, or .40), q� is the value of the
dependent variable at that specific quantile, 1fy � q� g is a function that equals 1
when an observation’s value of y is less than or equal to the value of the dependent
variable at quantile � , 0 otherwise, and fY .q� / is the density of y at quantile � . All
of these quantities are easily calculated except for the density, which is estimated
from the sample using a kernel density estimator.

Table 8.2 demonstrates how the RIF is calculated for three writing test scores
from the High School and Beyond dataset. Three scores are shown, one at the 25th
percentile (45.5), one at the 50th percentile (54), and one at the 75th percentile
(60). We wish to estimate an unconditional quantile regression for the effect of
an independent variable on the median of y; � is set to .50, and we choose the
writing score at the median (54) as q� . Taking the test score for each student, we
check to see whether it is less than or equal to the median score of 54. The first two
observations meet this criterion, so 1fy � q� g is set to 1 for these observations. The
third observation scored 60, which is higher than the median of 54, so 1fy � q� g is
set to 0 for this student.

Next, we estimate the density of y when Y D 54; the number in the table
is estimated using Stata’s kdensity command, with a Gaussian kernel and an
arbitrary bandwidth of 2. The histogram for the writing test score variable is
displayed in Fig. 8.2, along with the estimated density. The vertical line is drawn
where the writing test score equals 54, and the density (listed on the y-axis) is

Table 8.2 Calculating the recentered influence function

Y Quantile � q� 1fy � q� g fY .q� / RIF

45:5 .25 .50 54 1 0.03534932 39.8555

54 .50 .50 54 1 0.03534932 39.8555

60 .75 .50 54 0 0.03534932 68.1445

0

.02

.04

.06

.08

30 40 50 60 70

Fig. 8.2 Distribution of writing test scores
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equal to .035. Comparing the estimated density to the histogram illustrates one
potential disadvantage of the RIF function. We do not know the density of y in
the population, so we must rely on estimating it using our sample. But to estimate
the density using a kernel function, we must make some distributional and optimal
bandwidth assumptions that may or may not be correct. These assumptions, in turn,
will determine the quantile regression results.

Using these four quantities, the RIF can be calculated for each student. The
formula results in only two values for the dependent variable, depending on whether
an observation falls above or below the specified quantile. Once the RIF has been
calculated for each observation, it is used as the dependent variable in an OLS
model, regressing the RIF on a set of independent variables.

Interpretation

Close examination of Eq. 8.4 provides an intuitive understanding as to why the
RIF produces the effect of x on the unconditional distribution of Y , in contrast
to conditional quantile regression. Note that in Eq. 8.4, the dependent variable is
transformed without reference to any covariates (there are no x’s in the equation),
so changing the mix of covariates in the model does not change the interpretation of
ˇ, other than the fact that the set of control variables has changed. Thus, the value
of unconditional quantile regression estimates is that they are interpreted much like
OLS estimates; the interpretation is not within groups, as with conditional quantile
regression.

Use of unconditional quantile regression can sometimes yield very different
conclusions compared to conditional quantile regression. In their seminal paper
outlining their unconditional quantile regression estimator, Firpo et al. (2009)
analyze the effect of unionization on wages. Misinterpreting the conditional quantile
regression results (i.e., ignoring that these are within-group estimates), one would
conclude that unionization has a declining linear effect on wages across the
distribution, in that unionization greatly raises wages at the low end of the wage
distribution, with this effect lessening along the distribution to be lowest at the high
end of the wage distribution. Unionization, it would appear, has the biggest impact
on those with low wages. Unconditional quantile regression estimates, however, tell
a different story, with unionization increasing wages in the middle part of the wage
distribution, but actually decreasing wages at the high end of the distribution.

Similarly, the reanalysis of the motherhood penalty using unconditional quantile
regression indicates a different effect than the conditional estimates. With the con-
ditional estimates, there is a strong linear effect along the female wage distribution,
with motherhood having the strongest negative effects for the lowest quantiles. The
unconditional estimates reveal much more similar effects across the distribution,
with the strongest negative penalty occurring at the middle of the distribution, rather
than the lower end (Killewald & Bearak, 2014).
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Interpreting coefficients from unconditional quantile regression models as effects
at different points of the distribution of y is a useful feature, but can be easily
confused with interpretations of nonlinear OLS models. For example, in an OLS
model with an interaction term, the effect of X1 on Y may increase or decrease,
depending on the value of X2, the variable with which it is interacted. The effect
of academic ability on engagement may vary by level of socioeconomic status, if
ability and socioeconomic status have been interacted. Similarly, when including
a quadratic term, the effect of X1 on Y increases or decreases, depending on the
value of X1 that is plugged into the quadratic term X1 C X2

1 . The effect of age is
commonly specified as a quadratic function in the social sciences, allowing its effect
to increase, level off, and decrease as age increases. In both of these examples, the
effect of X varies depending on values of other independent variables.

With unconditional quantile regression, the effect of X on Y also varies, but it
varies depending on the value of Y. We interpret the effect of X on a particular
quantile of Y , rather than the effect of X conditional on the value of another
independent variable. As with nonlinear specifications of X , the effect (as measured
by the regression coefficient ˇ) varies, but the effect becomes weaker or stronger
depending on the location in the distribution of Y:

Estimation

As the example in Table 8.2 demonstrates, the value of the RIF depends crucially
on the estimated density of y. The density refers to the probability distribution of
y, such that the area under the density curve equals 1. Figure 8.3 illustrates the
difficulties in estimating the density, using histograms for the writing test score
variable, and bins with a width of two, four, and six points, respectively. The shape
of the distribution varies considerably, depending on the width of the bins. Most
obviously, the histograms are not smooth, which is a useful property when trying
to estimate the density of y at a particular value of y. The discrete nature of the
histogram bins makes it likely that the estimated density of y will be off, compared
to a smooth estimate of the density of y.

Kernel density estimators are a non-parametric approach to solving this problem.
Non-parametric here refers to the fact that the estimator does not yield a fixed set
of parameters. Suppose we had a variable x, and wished to estimate the density of
x over the entire distribution of x. Rather than use a histogram, we can estimate a
kernel density function such that

Of .x/ D 1

nh

nX

iD1

k
�x � xi

h

�
(8.5)

where k.�/ refers to a kernel function and h is a parameter known as the bandwidth
(StataCorp LP, 2013, p. 1009). The bandwidth is the crucial part of this formula, as
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Fig. 8.3 Distribution of
writing test scores using
different bin sizes. (a)
Bin = 2. (b) Bin = 4. (c)
Bin = 6
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the size of h determines how smooth or spiky the estimated density curve is, much
as the width of the bins for a histogram determine the smoothness of its shape.

The kernel function specifies a distribution to be used when estimating the
density. The standard normal density function can be used to draw a normal curve,
and should be familiar from any basic statistics class,

k.z/ D 1p
2�

e
�z2

2 (8.6)

and using this as the kernel, we can rewrite Eq. 8.5 as

Of .x/ D 1

n

nX

iD1

1p
2�

e
�
 

. x�xi
h /

2

2

!

: (8.7)

While this equation may look complex, it provides an elegant solution for plotting
the density of x. A simple example illustrates how the kernel density function works.

Table 8.3 provides a dataset consisting of a single variable x with five observa-
tions, and Fig. 8.4 plots the density of this variable using a bandwidth of 1. From the

Table 8.3 Calculating the
density of x at 3 with a
Gaussian kernel density
estimator

(1) (2) (3)

xi
.x�xi /2

2
e�.column 1/ 1

p

2�
� .column 2/

1 2.0 0.1353 0.0540

1 2.0 0.1353 0.0540

3 0.0 1.0000 0.3989

4 0.5 0.6065 0.2420

4 0.5 0.6065 0.2420
P5

iD1 column 3
5

D 0:1982
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Fig. 8.4 Estimated density using Gaussian kernel and a bandwidth of 1
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graph, the density of x when x D 3 is approximately .2, and we can use Eq. 8.7 to
calculate this directly. In the first column of Table 8.3, we subtract each observation
from 3, square it, and divide by 2 (because the bandwidth is 1 in this example,
we can ignore the h’s in Eq. 8.7). In the next column, we multiply this quantity by
�1 and exponentiate it. Finally, we divide this quantity by the square root of 2� .
Column 3 thus contains the quantity to the right of the summation sign in Eq. 8.7,
and we sum these over the entire dataset and divide by the sample size to determine
the density of x when x D 3, .198, matching what is shown in Fig. 8.4.

As the table demonstrates, the algorithm places greater weight on observations
closest to the chosen value of x. More importantly, in Eq. 8.7 the differenced
quantity, x � xi , is divided by the bandwidth parameter. The size of this parameter
will greatly determine the quantity for each observation before summing, thus
determining what the final density will look like. Because the exact value of the
RIF is determined by the density of y (the term fY .q� / in Eq. 8.4), determining
the bandwidth is an important choice. Unfortunately, the literature does not provide
much advice as to determining the appropriate kernel function and bandwidth for
unconditional quantile regression, and in practice, researchers appear to be using
the defaults of their particular software package.

Returning to the distribution of the writing test score variable, we can calculate
its density using a variety of kernels and bandwidths. Figures 8.5 and 8.6 provide the
estimated density of test scores using bandwidths of 1, 2, and 3, with two commonly-
used kernels, the Gaussian (standard normal distribution) and the Epanechnikov.
Both figures demonstrate that the estimated density at a specific test score can vary
greatly depending on the bandwidth used, with smaller differences due to the choice
of kernel.

While the help file for the Stata command rifreg suggests that

The RIF for quantiles may be sensitive to the choice of bandwidth. It is advisable to graph
the density and explore alternative choices of bandwidth for appropriate smoothness using
the options in [the Stata command] vkdensity, for example.

kernel and bandwidth choices appear to be rarely discussed in papers applying
unconditional quantile regression in education. I describe several ways to determine
the optimal bandwidth in the empirical example below.

Presentation of Results

As should be clear at this point, quantile regression models yield numerous sets of
results, depending on the quantiles of interest. As Davino et al. (2014) demonstrate,
the number of distinct quantiles that can be estimated increases with the sample size,
so that it is possible to estimates hundreds of different quantiles. In practice, such a
vast quantity of output is unnecessary. Instead, authors adopt one of two approaches
to the presentation of results, and sometimes both.
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Fig. 8.5 Distribution of
writing test scores using
Epanechnikov kernel and
different bandwidths. (a)
Bandwidth = 1. (b)
Bandwidth = 2. (c)
Bandwidth = 3
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Fig. 8.6 Distribution of
writing test scores using
Gaussian kernel and different
bandwidths. (a)
Bandwidth = 1. (b)
Bandwidth = 2. (c)
Bandwidth = 3

0

.02

.04

.06
a

b

c

D
en

si
ty

30 40 50 60 70

Writing score
kernel = gaussian, bandwidth = 1.0000

0

.01

.02

.03

.04

.05

D
en

si
ty

30 40 50 60 70

Writing score

kernel = gaussian, bandwidth = 2.0000

0

.01

.02

.03

.04

D
en

si
ty

30 40 50 60 70

Writing score
kernel = gaussian, bandwidth = 3.0000



354 S.R. Porter

In the first approach, specific quantiles are chosen and a table is created, with
each column corresponding to the quantile regression results for a given quantile.
Typical quantiles displayed in a table are the 10th, 25th, 50th (median), 75th, and
90th. This approach has the advantage of providing the reader with complete model
results, and by following coefficients across columns, examine how the effect of an
independent variable differs across the distribution of y.

A second approach to presenting results calculates the effect for each indepen-
dent variable for each quantile in .01 increments, from .01 to .99. That is, the effect
is calculated for the 1st quantile, the 2nd quantile, and so forth. Obviously a table of
99 results is not feasible, nor likely to be comprehensible, so the results are instead
graphed, with the quantiles along the x-axis and the size of the quantile regression
coefficient on the y-axis. Superior graphs also include 95 % confidence intervals for
each quantile, so that the reader can understand at what points along the distribution
of y the effect is not statistically significant (the intervals bracket 0). Both of these
approaches will be shown below.

Empirical Example

To illustrate the use of unconditional quantile regression in postsecondary research,
I use data from the 2004 National Survey of Postsecondary Faculty (NSOPF) to
understand the impact of gender and other covariates on the distribution of faculty
compensation. Faculty compensation and its determinants have long been a topic of
study within higher education, as researchers have striven to understand why racial
and gender differentials exist in faculty pay.

The first example estimates the male-female differential in faculty compensa-
tion.2 The dependent variable is the amount of base salary received during the
calendar year from the faculty member’s institution, excluding other sources of
compensation from within the institution (such as summer salary and payment for
overload courses and administrative duties) as well as outside the institution (such
as consulting fees and honoraria).

As noted earlier in the chapter, the unconditional quantile regression estimator
as implemented by Firpo et al. (2009) relies an the estimated density of y, and
this quantity varies depending on the kernel function and bandwidth chosen for
estimation. This in turn raises the crucial question, how should one choose the
kernel and bandwidth? Applied researchers appear to rely on software defaults
for these choices, which may not always be the best strategy for estimation.
Instead, the researcher should investigate the distribution of y, determine the optimal
bandwidth, and run a sensitivity analysis by altering the kernel and bandwidth and
reestimating the quantile regression model for different values of the bandwidth

2To simplify the analysis, no survey weights or adjustments of the standard errors for the complex
sampling design of the NSOPF are used, and the dependent variable is not logged.
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and different choices of kernel. This approach is similar to many regression-
discontinuity applications, which estimate the regression model multiple times using
varying bandwidths around the cutoff score.3 Given the amount of output that an
unconditional quantile regression model produces (one set of model results for each
quantile), it is not feasible to include all of these sensitivity analyses in the typical
journal article. However, the results should be summarized in the text, and a web
appendix that details the analyses should be provided.

Several commands are available in Stata for estimating unconditional quantile
regression models, as well as for determining the optimal bandwidth for a given
application. Firpo et al. (2009) have developed the Stata command rifreg to
implement their unconditional quantile regression estimator.4 It relies on Stata’s
kdensity command to estimate the density of y at the specified quantile using
the Gaussian kernel as the default, and the Stata manual explains how this is accom-
plished. The kdensity command estimates the “optimal” bandwidth by using
“the width that would minimize the mean integrated squared error if the data were
Gaussian and a Gaussian kernel were used, so it is not optimal in any global sense. In
fact, for multimodal and highly skewed densities, this width is usually too wide and
oversmooths the density” (StataCorp LP, 2013, p. 1003). Such language is not reas-
suring, and highlights the risks of relying on software defaults for modeling choices.

Another user-written command, vkdensity (Fiorio, 2004), allows the user to
use three different approaches to determining the optimal bandwidth. The field of
density estimation is fairly extensive, so the following description is only a brief
overview. Each of the three approaches takes some measure of the spread in the
distribution of y, combined with the sample size and a numerical adjustment,
to determine the optimal bandwidth h. The default in Stata, for example, is the
approach proposed by Silverman (1992)

h D :9m

n1=5
(8.8)

where m is the smaller of either the standard deviation of y or the interquartile range
(75th percentile�25th percentile) divided by 1.349 (StataCorp LP, 2013, p. 1010).
Härdle (1991) proposes a similar formula, using 1.06 in the numerator instead of
.9. Not surprisingly, these two approaches tend to yield similar h’s. Finally, Scott
(1992) proposes a more complex approach, combining measures of the “roughness”
R.K/ and variance �K of the kernel with the standard deviation and sample size of y

h D 3

�
R.K/

35�4
K

�1=5

�yn�1=5: (8.9)

3Indeed, one of the co-authors of the Firpo et al. (2009) paper has done this in their discussion
papers, but omitted the sensitivity analyses from their published papers (Fortin, June 2 2014,
Personal communication).
4While their estimator is easily programmed by hand, the ado files for this command can be found
at http://faculty.arts.ubc.ca/nfortin/datahead.html

http://faculty.arts.ubc.ca/nfortin/datahead.html
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Table 8.4 Optimal
bandwidth estimation

sy 28,604 Silverman :9.22;606/

9;9491=5 D 3;228
25th percentile 47,500

75th percentile 77,996 Härdle 1:06.22;606/

9;9491=5 D 3;802
IQR 30,496

IQR/1.349 22,606 Scott 1:144.28;604/

9;9491=5 D 5;192
n 9,949

For the Gaussian kernel, R.K/ D :5=
p

� and �K D 1 (Salgado-Ugarte, Shimizu,
& Taniuchi, 1995), so that Eq. 8.9 simplifies to

h D 1:144�yn�1=5: (8.10)

These different approaches to determining the optimal bandwidth differ in two
ways. First, the factor used to adjust the standard deviation to determine the
bandwidth h varies. Second, either the standard deviation or the interquartile range
is used as a measure of the spread of the distribution. Table 8.4 estimates h, using
the three approaches and the base salary data from the NSOPF. The Scott estimate is
larger not only due to the larger factor (1.144), but also because in this application,
the standard deviation (28,604) is larger than the interquartile range divided by
1.349 (22,606). The Silverman optimal bandwidth is the default of the kdensity
command, and the other two optimal bandwidths can easily be estimated with the
vkdensity command using the hardle and scott options.

In practice, it can be difficult to determine which approach is optimal, so I
recommend using all three to determine the sensitivity of your results and reporting
the results using the Silverman formula in your tables (simply because this is the
default, and your results will be comparable to other researchers who rely on the
software defaults). As Figs. 8.5 and 8.6 demonstrate, bandwidth choice has a much
larger impact on the shape of the density than does kernel choice. Nevertheless, it
is very easy to construct code that runs your model using all of the eight kernels
that can be used with kdensity as a sensitivity check, and then using rifreg’s
default Gaussian kernel for reporting your main model results.

Finally, one could always argue that for a given application, it makes sense to use
a bandwidth that differs from the Silverman, Härdle, and Scott optimal bandwidths.
Such an approach would require (a) a detailed explanation of why the particular
bandwidth is better suited for the distribution of y than one of the optimal bandwidth
calculations listed here (e.g., a distributional argument) and, (b) a summary of
results based on the Silverman, Härdle, and Scott optimal bandwidths, as these are
some of the more common approaches to the knotty issue of which bandwidth to use
in kernel density estimation. The worry here is that one could play around with the
bandwidth until the desired results are found, much as researchers can run multiple
linear models with different specifications until they find what they are seeking (Ho,
Imai, King, & Stuart, 2007). Without such an explanation, the reader will be left
wondering how robust one’s results really are.
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Table 8.5 Male-female salary differentials, OLS and unconditional quantile regression results

Quantiles of y

OLS .10 .25 .50 .75 .90

Female �5,441 �979 �1,562 �3,662 �7,228 �12,991

(516)��� (420) (412)��� (534)��� (810)��� (1,372)���

Asian 684 1,224 2,372 2,917 457 �2,909

(891) (610) (659)��� (936)�� (1,528) (2,685)

Black �50 �259 246 606 �233 284

(992) (848) (820) (1,014) (1,465) (2,584)

Latino 550 2,053 1,164 724 �2,079 762

(1,057) (788)�� (888) (1,101) (1,580) (2,865)

Nat. Amer. �4,513 490 �377 �5,482 �8,172 �10,867

(1,678)�� (1,306) (1,419) (1,846)�� (2,474)��� (3,593)��

Full 24,506 8,935 16,545 25,265 34,129 35,600

(578)��� (476)��� (450)��� (583)��� (963)��� (1,692)���

Associate 8,040 7,560 11,120 10,925 6,941 489

(581)��� (500)��� (498)��� (601)��� (795)��� (1,266)

Articles 1,901 332 533 1,078 2,310 4,823

(61)��� (33)��� (41)��� (67)��� (119)��� (268)���

Books 573 257 459 754 457 562

(170)��� (89)�� (115)��� (194)��� (302) (547)

Constant 46,739 36,509 40,150 50,409 55,026 51,223

(1,966)��� (1,061)��� (1,326)��� (1,906)��� (3,107)��� (3,745)���

Note: Cell entries are coefficients, with robust standard errors in parentheses. Models include 31
discipline-specific fixed effects. Unweighted n equals 9,949
**p < 0:05; ***p < 0:01

As with OLS, researchers usually display unconditional quantile regression
results in a tabular format, often with the OLS results as a comparison to illustrate
how conclusions can differ when understanding effects across the entire distribution.
Table 8.5 presents one approach to displaying the faculty compensation results, with
the OLS coefficients in the first column, and results for selected quantiles in the other
columns. Note that with unconditional quantile regression, a separate regression
model is estimated for every specific quantile, so to produce the results in Table 8.5, I
estimated five different unconditional quantile regression models using the rifreg
command.

Substantively, both the OLS and unconditional quantile regression results are in
line with the literature, suggesting a negative male-female differential. The OLS
results indicate that female faculty make, on average, over $5,000 less than male
faculty with the same demographic and professional profile. With OLS, this estimate
is the differential at the mean of the salary distribution. The unconditional quantile
regression results, however, tell a different story. At the low end of the distribution,
the male-female differential is about $1,000, increasing to almost $4,000 at the
median and then to $13,000 at the 90th percentile. In other words, the results suggest
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a male-female differential that is small when compensation is low, but much larger
when compensation is high. This trend is masked when using OLS to estimate the
male-female differential.

Another way to conceptualize the quantile regression results is with a thought
experiment, in which females suddenly become males. In the case of OLS, if this
occurred, mean compensation for females would increase over $5,000. In the case
of the quantile regression results, we should think of the entire distribution of
compensation shifting, as females become males. If this occurred, the distribution
would shift to the right (in a positive direction), with small shifts at the low end of
the distribution, and much larger shifts at the higher end of the distribution.

Graphical presentation is very helpful in presenting conditional and uncondi-
tional quantile regression model results, as the results for every .01 quantile can
be summarized in a single graphic. In Fig. 8.7, the x-axis consists of quantiles
ordered from .01 to .99, and the y-axis is the size of the female dummy variable
coefficient. In other words, the figure displays the male-female differential for the
1st through the 99th quantiles, plotted as the thick line, summarizing the results
from 99 different unconditional quantile regression models. They are different in
that they are each estimated at a different quantile; the set of independent variables
is the same for each model. The dotted lines above and below the thick line plot the
95 % confidence intervals for each coefficient, and the horizontal dashed line plots
the OLS estimate of the differential (it is constant across the quantiles because OLS
yields only one estimate of the differential).

Figure 8.7 adds two additional details to the story of male-female salary
differences that are not apparent in Table 8.5. First, the confidence intervals for
the coefficients below the 8th quantile bracket zero, indicating that the differential
is not statistically significant at the very bottom of the distribution. Salary equity,
it would seem, is achieved at the lowest end of the distribution. Second, the size of
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Fig. 8.7 Male-female differential in faculty compensation, summary of quantile regression results
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Fig. 8.8 Effect of one additional publication on faculty compensation, summary of quantile
regression results. (a) Books. (b) Articles

the salary differential increases rapidly above the 90th quantile, increasing to almost
$30,000 at the 99th quantile, although the confidence intervals for this part of the
distribution are wide.5

Graphics such as Fig. 8.7 are also useful when reviewing results for a large set of
independent variables. Figure 8.8, for example, summarizes the results for the effect

5Please note that for expository purposes I am assuming selection on observables, but this clearly
does not hold here. There are many differences between male and female faculty that are not taken
into account by the simple model estimated here, so the results should not be interpreted as the
“true” male-female salary differential.



360 S.R. Porter

of the number of books and articles published in the previous 2 years (not career
publications) on compensation. An additional book yields a small, modest increase
in salary along all parts of the distribution. An additional article, however, yields
a small payoff at the low end of the distribution, with an increasingly larger yield
at the higher end of the salary distribution. An additional article results in a $1,900
increase in compensation at the mean, but a $4,800 increase in compensation at the
90th quartile (see Table 8.5).

Inference

Correctly estimated standard errors are crucial for most analyses, as they are used
to calculate test statistics for hypotheses, such as whether ˇ is different from 0,
as well as for confidence intervals. Yet besides dealing with non-independence of
observations (such as the clustering of students within colleges), higher education
researchers have tended to ignore this issue in much of their applied work. For
example, robust standard errors are widely acknowledged as more appropriate for
most applications using OLS and related models, but relatively few published papers
in our field use robust standard errors, and instead use default standard errors that
assume homoskedasticity.

For unconditional quantile regression, researchers face the choice of using
standard errors derived from formulas assuming asymptotic normality (the default
for most linear models such as OLS, logistic regression, and HLM) or standard
errors derived from bootstrapping. Asymptotic normality refers to the idea that as
the sample size for a random variable increases, its probability density function more
closely approximates the standard normal distribution. In formal proofs, the sample
size is taken to infinity, which raises the question of how large does a sample have
to be for the assumption of asymptotic normality to hold? Unfortunately, there is no
simple answer to this question, and most researchers simply assume it holds when
estimating their regression models and standard errors.

Rather than using derived formulas to estimate the standard error of a regression
coefficient ˇ, bootstrapping uses the data at hand to estimate the standard errors.
Assuming that the sample at hand is representative of the population, repeated
subsamples of the sample are drawn, and the parameter of interest (in this case, ˇ) is
estimated. The variance and standard deviation of ˇ is estimated, and because we are
viewing the distribution of ˇ in the bootstrapped samples as a sampling distribution,
this standard deviation is the standard error for ˇ. While bootstrapped standard
errors are appealing because we do not need to rely on distributional assumptions,
one drawback is that they do change as the model is reestimated, due to the drawing
of random samples to estimate the standard error. As with multiple imputation, this
can be avoided by choosing a seed number that starts the random process, so that
results can be replicated.

As an example, Fig. 8.9 presents the 100 unconditional quantile regression
coefficients at the median for the female dummy variable that are produced when
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Fig. 8.9 Distribution of bootstrapped regression coefficients, male-female differential

estimating standard errors via the bootstrap. They are the result of drawing 100
subsamples from the data and then estimating the faculty compensation model at
the 50th percentile using unconditional quantile regression on each sample. The
estimate for the male-female differential reported in Table 8.5 is �3,662; note that
the distribution of the 100 bootstrapped coefficients is centered just to the right
of �4,000, and the mean of the coefficients equals �3,635, close to our original
quantile regression estimate. The standard deviation of the coefficients is 579, which
is close to the asymptotic standard error of 534 reported in Table 8.5.

Table 8.6 compares the two sets of standard errors that can be estimated for any
unconditional quantile regression model, formula-based versus bootstrapped. The
last set of numbers are ratios of the bootstrapped standard errors to the asymptotic
standard errors (the default option for rifreg and most statistical software), such
that the ratios can be interpreted as percentage differences. For example, at the 10th
quantile, the bootstrapped standard errors for the female dummy variable coefficient
are 7 % larger than the asymptotic standard errors. On average, the bootstrapped
standard errors are about 5 % larger, with some much larger differences, especially
for the 90th quantile. Such differences naturally raise the question of which set
should be used when reporting results. Like many areas of statistics, partisans can be
found on both sides of the issues. Given its lack of distributional assumptions, I tend
to favor the bootstrapping standard errors, with two caveats. First, a specific seed
for the random number generator should always be used, otherwise you (and other
scholars) will not be able to exactly replicate your results. Second, the traditional
standard errors should also be estimated and compared to the bootstrapped standard
errors, as a sensitivity analysis.



362 S.R. Porter

Ta
bl

e
8.

6
C

om
pa

ri
so

n
of

st
an

da
rd

er
ro

rs

A
sy

m
pt

ot
ic

B
oo

ts
tr

ap
pe

d
R

at
io

.1
0

.2
5

.5
0

.7
5

.9
0

.1
0

.2
5

.5
0

.7
5

.9
0

.1
0

.2
5

.5
0

.7
5

.9
0

Fe
m

al
e

4
2
0

4
1
2

5
3
4

8
1
0

1
;3

7
2

4
5
0

4
5
8

5
7
9

8
2
0

1
;3

7
4

1
:0

7
1
:1

1
1
:0

8
1
:0

1
1
:0

0

A
si

an
6
1
0

6
5
9

9
3
6

1
;5

2
8

2
;6

8
5

7
1
1

6
9
0

9
8
0

1
;5

2
7

2
;8

7
8

1
:1

7
1
:0

5
1
:0

5
1
:0

0
1
:0

7

B
la

ck
8
4
8

8
2
0

1
;0

1
4

1
;4

6
5

2
;5

8
4

8
8
1

7
9
4

9
7
3

1
;4

2
3

2
;7

1
2

1
:0

4
0
:9

7
0
:9

6
0
:9

7
1
:0

5

L
at

in
o

7
8
8

8
8
8

1
;1

0
1

1
;5

8
0

2
;8

6
5

7
6
6

8
2
3

1
;1

4
8

1
;5

9
2

2
;7

5
5

0
:9

7
0
:9

3
1
:0

4
1
:0

1
0
:9

6

N
at

iv
e

A
m

er
.

1
;3

0
6

1
;4

1
9

1
;8

4
6

2
;4

7
4

3
;5

9
3

1
;4

3
9

1
;6

3
4

1
;9

4
1

2
;2

4
5

3
;5

7
7

1
:1

0
1
:1

5
1
:0

5
0
:9

1
1
:0

0

Fu
ll

4
7
6

4
5
0

5
8
3

9
6
3

1
;6

9
2

5
2
3

5
2
5

6
8
3

1
;3

3
1

2
;5

3
4

1
:1

0
1
:1

7
1
:1

7
1
:3

8
1
:5

0

A
ss

oc
ia

te
5
0
0

4
9
8

6
0
1

7
9
5

1
;2

6
6

5
3
6

4
6
8

6
3
5

7
8
8

1
;1

1
4

1
:0

7
0
:9

4
1
:0

6
0
:9

9
0
:8

8

A
rt

ic
le

s
3
3

4
1

6
7

1
1
9

2
6
8

3
2

4
3

6
9

1
2
2

3
7
0

0
:9

7
1
:0

5
1
:0

3
1
:0

3
1
:3

8

B
oo

ks
8
9

1
1
5

1
9
4

3
0
2

5
4
7

8
4

1
1
8

1
5
2

2
7
7

5
2
6

0
:9

4
1
:0

3
0
:7

8
0
:9

2
0
:9

6

C
on

st
an

t
1
;0

6
1

1
;3

2
6

1
;9

0
6

3
;1

0
7

3
;7

4
5

1
;0

9
9

1
;3

8
6

1
;7

4
3

3
;2

1
7

5
;0

2
8

1
:0

4
1
:0

5
0
:9

1
1
:0

4
1
:3

4



8 Quantile Regression: Analyzing Changes in Distributions Instead of Means 363

Sensitivity of Results

The unconditional quantile regression model results discussed so far are based on
the defaults for the rifreg command; that is, they use the Gaussian kernel and the
optimal bandwidth calculated with the Silverman (1992) method. As a sensitivity
analysis, the unconditional regression models were reestimated using the Gaussian,
Epanechnikov, and uniform kernels, and then for each kernel using the optimal
bandwidth formulas of Silverman, Härdle, and Scott, as outlined above. Table 8.7
presents the results for the female dummy variable coefficient only. Comparing
the results using different bandwidths within each of the three kernels, the largest
dollar difference between the estimates is less than $2,000, and the other differences
are much smaller. Comparing the results using the different kernels in the table,
the differences are even smaller, which is not surprising given that kernel density
estimators are generally more sensitive to choice of bandwidth than choice of kernel.
For this application, the results appear relatively insensitive regardless of whether
the Gaussian, Epanechnikov, or uniform kernel is used, as well as to how the optimal
bandwidth is calculated.

Table 8.7 Sensitivity of results to kernel selection and bandwidth calculation

Bandwidth
calculation

Quantiles of y

Kernel .10 .25 .50 .75 .90

Gaussian Silverman �979 �1,562 �3,662 �7,228 �12,991

(420)�� (412)��� (534)��� (810)��� (1,372)���

Härdle �1,024 �1,651 �3,719 �7,207 �13,254

(439)�� (435)��� (542)��� (808)��� (1,400)���

Scott �993 �1,582 �3,689 �7,232 �13,187

(426)�� (417)��� (538)��� (811)��� (1,393)���

Epanechnikov Silverman �981 �1,557 �3,685 �7,300 �13,251

(420)�� (410)��� (537)��� (818)��� (1,400)���

Härdle �1,032 �1,664 �3,717 �7,212 �13,320

(442)�� (439)��� (542)��� (808)��� (1,407)���

Scott �1,001 �1,573 �3,717 �7,262 �13,483

(429)�� (415)��� (542)��� (814)��� (1,424)���

Uniform Silverman �904 �1,486 �3,486 �6,262 �12,492

(387)�� (392)��� (508)��� (702)��� (1,320)���

Härdle �909 �1,577 �3,374 �7,135 �12,323

(390)�� (416)��� (492)��� (800)��� (1,302)���

Scott �1,023 �1,488 �3,957 �7,227 �14,236

(438)�� (392)��� (577)��� (810)��� (1,504)���

Note: Cell entries are coefficients, with standard errors in parentheses
**p < 0:05; ***p < 0:01
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Comparison to Conditional Quantile Regression

As noted previously, conditional quantile regression estimates are not only difficult
to interpret compared to unconditional quantile regression, but the substantive sizes
of the coefficients often differ. Table 8.8 presents the conditional quantile regression
results for the exact same faculty compensation model from Table 8.5, using the
qreg command. Similar trends are evident for the male-female differential and
the effect of publications on compensation, although the effects are smaller in the
conditional quantile regression model than the unconditional model. Figure 8.10
plots the coefficients and confidence intervals for the unconditional and conditional
regression coefficients. In each graph the solid dark line plots the unconditional
results and the lighter, dashed line plots the conditional results. The male-female
differential is relatively the same for both estimators until about the 40th quantile,
after which the conditional estimates suggest a smaller effect for gender (panel a).
The estimated effect of one additional book is about the same for both estimators
(panel b). The results for articles, however diverge, with larger coefficients for the
conditional estimates at lower quantiles, and then reversing at the 80th quantile,
exhibiting much smaller estimates than the unconditional results.

Table 8.8 Male-female salary differentials, conditional quantile regression results

Quantiles of y

Variable .10 .25 .50 .75 .90

Female �1,077 �1,370 �2,597 �4,181 �7,600

(526)�� (482)��� (469)��� (645)��� (1,185)���

Asian 613 2,055 1,648 149 373

(906) (832)�� (809)�� (1,112) (2,043)

Black �1,503 �320 108 430 774

(1,010) (927) (901) (1,238) (2,276)

Latino 428 �105 352 �221 3,026

(1,076) (988) (960) (1,319) (2,425)

Native Amer. �3,477 �3,361 �2,597 �3,788 �4,385

(1,707)�� (1,568)�� (1,524) (2,094) (3,848)

Full 12,636 16,932 23,371 29,612 34,933

(588)��� (540)��� (525)��� (721)��� (1,325)���

Associate 6,026 6,895 8,352 8,888 9,733

(591)��� (542)��� (527)��� (725)��� (1,332)���

Articles 1,010 1,425 1,824 2,537 3,240

(62)��� (57)��� (55)��� (76)��� (139)���

Books 410 321 503 369 1,233

(173)�� (159)�� (154)��� (212) (389)���

Constant 37,597 44,586 47,173 51,112 52,547

(2,001)��� (1,837)��� (1,786)��� (2,454)��� (4,510)���

Note: Cell entries are coefficients, with standard errors in parentheses. Models include 31
discipline-specific fixed effects. Unweighted n equals 9,949
**p < 0:05; ***p < 0:01
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Unconditional Quantile Regression
with Endogenous Treatment

The unconditional quantile regression estimator described above simply uses the
recentered influence function (RIF) to transform y before employing OLS to
estimate the coefficients. OLS relies on several assumptions so that we can use the
results to infer the effect of an independent variable on y. Most of these assumptions
can be easily dealt with in one way or another. Heteroskedastic errors, for example,
can be handled with robust standard errors, while severe multicollinearity can be
addressed through data reduction or an increase in the number of observations. The
single most important assumption underlying OLS, however, also turns out to be the
most difficult to address.

In the context of educational data, in which students, families, and institutions
make a variety of choices that we can only observe in our data (as opposed to
experimentally manipulate), OLS assumes exogeneity, conditional independence,
or selection on observables. Exogeneity means that the independent variables in the
model are uncorrelated with the error term u

Yi D ˇ0 C ˇ1Di C ˇ2Xi C ui (8.11)

where D is a dummy variable indicating participation in a policy, program, or
behavior of interest, and X represents a set of control variables.

Given our interest in the effect of D, unbiased estimation of ˇ1 is crucial.
However, we can only conclude that ˇ1 is unbiased if D is uncorrelated with u.
Given that u represents the variables that affect Y but are not included in the
model, this assumption is unrealistic in most areas of higher education research.
Consider a simple example that should be familiar to all postsecondary researchers:
student outcomes. A few of the factors that drive student decision-making and
affect student outcomes are the quality and culture of the primary and secondary
schools attended, how much the family emphasizes education and how supportive
they are of postsecondary educational pursuits, the attitudes of friends and peers
towards educational choices and appropriate aspirations for life, as well as myriad
other sources of social and cultural capital, student academic ability, psychological
makeup such as conscientiousness and grit, their physical health, and other sources
of human capital, and the financial resources available through family connections,
postsecondary institutions, and other sources, such as state and federal agencies.

The central issue is that these factors drive decisions about outcomes of interest,
such as college access and persistence, and many of these factors also drive
decisions to participate in programs and behaviors of interest (D’s), such as
remediation, first-year initiatives, and student engagement. We can only credibly
claim exogeneity if none of the factors in u are correlated with D. Clearly, this is
a high hurdle to jump, which is why alternative forms of OLS that can credibly
claim exogeneity of treatment variables (such as instrumental variables, regression
discontinuity, and panel models) are becoming more popular with educational
researchers (Murnane & Willett, 2011).
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Instrumental Variables

Instrumental variables is a simple yet powerful approach to the problem of
endogeneity of treatment. Given

Yi D ˇ0 C ˇ1Di C ˇ2Xi C ui (8.12)

we seek an alternative form of D that is not correlated with u. If a variable exists
that is highly correlated with D but not with u, we can use a two-step process to
“purge” D of its correlation with u.

First, if D and Z are correlated, we can estimate the following model in which
D is driven in part by Z

Di D �0 C �1Zi C �2Xi C vi (8.13)

and then create predicted values from this model

ODi D O�0 C O�1Zi C O�2Xi : (8.14)

Second, we use these predicted values in place of D in our original treatment effect
model

Yi D ˇ0 C ˇ1
ODi C ˇ2Xi C ui (8.15)

because if Z and X are uncorrelated with u, then this new estimate of D must also
be uncorrelated with u. See Porter (2014) for an explanation of the assumptions
underlying IV, and Bielby, House, Flaster, and DesJardins (2013) for an overall
review.

Building on the work of Abadie, Angrist, and Imbens (2002) and Abadie (2003),
Fröhlich and Melly (2010, 2013) propose an IV estimator for unconditional quantile
regression when the main focus of interest is the effect of a binary treatment
variable, and a credible binary instrument for the treatment exists.6 Similar to
the conditional quantile regression approach, their estimator is formulated as an
optimization problem with weights, such that

arg min
NX

iD1

�� .Yi � ˛ � ˇDi /Wi (8.16)

where �� .Yi � ˛ � ˇDi / is again an absolute value function for the linear model of
Yi D ˛ C ˇDi , such that �� .u/ D u � .� � 1.u < 0//, and Wi represent the weights
for the IV estimator.

6Continuous instruments can be dichotomized to satisfy this requirement.
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Equation 8.16 appears very similar to Eq. 8.3, and like the conditional quantile
regression estimator is solved through optimization. There are, however, two
major differences between the conditional quantile regression estimator and the
instrumental variables unconditional quantile regression estimator. First, note that
the covariates X (other than the treatment variable D) do not appear in Eq. 8.16,
as they do in the formula for conditional quantile regression. This results in
unconditional versus conditional quantile estimates. Second, Eq. 8.16 includes the
set of IV weights W , which are used to identify the effect of D for compliers in the
population (see Porter (2014) for an explanation of compliers, defiers, always-takes
and never-takers).

The weights W are derived from the treatment variable D, the instrument Z, and
an estimate of the probability that Z D 1 (notated by �.Z D 1jX/)

Wi D Zi � �.Zi D 1jXi /

�.Zi D 1jXi /.1 � �.Zi D 1jXi //
.2Di � 1/: (8.17)

The weights are the crucial part if this estimator, and can be thought of as
“complier weights.” They weight the data in order to estimate the effect of D for
compliers, relying on the relationship between the instrument and the endogenous
regressor.

Recall that with IV, we can only estimate the effect of D for units whose behavior
is actually affected by the instrument Z. With binary instruments and treatments,
we can partition units into four cells (assuming monotonicity, i.e., the absence of
defiers). Table 8.9 illustrates these cells based on the values of the instrument and
the treatment for units. Compliers fall across the diagonal, because they decline
treatment when Z D 0, and agree to treatment when Z D 1. We cannot identify
them individually, because always-takers and never-takers also appear in these cells
as well .Z D 0; D D 0I Z D 1; D D 1/. For example, never-takers always decline
treatment regardless of the value of the instrument, so they are units whose D D 0

for both Z D 0 and Z D 1.
We can, however, estimate the treatment effect for the compliers across the entire

dataset, even if we cannot identify them individually, and the weights W achieve
this, as well as balancing the distribution of covariates between treated and untreated
compliers (Fröhlich & Melly, 2010). This allows the estimated treatment effects to
be considered unconditional even with the inclusion of covariates, similar to the

Table 8.9 Compliance
behavior of units

Treatment Di

Instrument Zi 0 1

0 Compliers and
never-takers

Always-takers

1 Never-takers Compliers and
always-takers
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Table 8.10 Weights for
Fröhlich and Melly (2013) IV
estimator

Z D �.Z/ W

Compliers and always-takers 1 1 0.5 2

Compliers and never-takers 0 0 0.5 2

Always takers 0 1 0.5 �2

Never-takers 1 0 0.5 �2

effects estimated by the Firpo et al. (2009) recentered influence function approach
that assumes exogeneity of treatment.

In the simplest example, suppose we estimate an IV unconditional quantile
regression model with no covariates. In this case, �.Z D 1jX/ D �.Z/, or the
mean of Z. Suppose further that for half of the sample, the instrument takes the
value of 1, so �.Z/ D :5. Using Eq. 8.17 and the four groups from Table 8.9,
we can estimate the weights as shown in Table 8.10. The two groups that contain
compliers always receive positive weights, while the always-takers and never-takers
always receive negative weights. The size of the weight is determined by the
propensity score, �.Z D 1jX/; the weights are equal among the groups only when
�.Z D 1jX/ D :5.

Estimation

This estimator has been implemented in Stata via the user-created ivqte com-
mand. The main issue in using the IV unconditional quantile regression estimator
is generating W , specifically, estimating �.Z D 1jX/. With no covariates in the
model, �.Z D 1jX/ is the mean of Z. With covariates, the estimated probability of
Z becomes a type of propensity score, and there are different ways of estimating it.

First, because Z is a binary variable, we can use either logistic regression (the
ivqte default) or a linear probability model (an OLS regression with a binary
dependent variable). Typically logistic regression is preferred, because it yields
predicted probabilities bounded within 0 and 1.

Second, we can use either global or local models. Global models use the
entire sample to estimate �.Z D 1jX/; for example, �.Z D 1jX/ is estimated
using a logistic regression model with Z as the dependent variable and X as the
covariate(s). Local models use a kernel and weighted subsets of the data to estimate
�.Zi /, somewhat similar to the kernel density estimator. As with the kernel density
estimator, some choice must be made as to how much of the data should be used.
With local logistic regression, two smoothing parameters must be set to determine
the bandwidth used: h for continuous predictors of Z, which varies between 0 and
1, and � for discrete predictors of Z, which varies between 0 and 1. When h is
set to infinity and � to 1, the entire dataset is used and a global model is estimated.
In addition, a kernel must be chosen for local logistic regression; the Epanechikov
kernel is the default in ivqte.
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As with kernel density estimators, the researcher faces choices as to how smooth
the estimates should be (h and �), as well as which kernel to use. Because the
literature indicates that kernel choice has little practical impact on results (Fröhlich
& Melly, 2010), the primary issue is choosing the optimal values of h and �.
Fröhlich and Melly (2010) have developed a related command, locreg, which
provides the researcher with these optimal values.

Empirical Example

To illustrate the use of unconditional quantile regression with instrumental variables,
I continue with the NSOPF data to understand the impact of faculty unions
on faculty compensation. The major concern with literature in this area is the
endogeneity of unionization. The literature suggests two reasons why a variable
measuring the presence of a faculty union at an institution is endogenous in a
model with faculty compensation as the dependent variable. First, there may be
omitted variables from the model. Faculty at unionized institutions may differ from
faculty at non-unionized institutions in ways that are not easily measured. Unionized
institutions may tend to attract faculty who prefer to teach rather than conduct
research; faculty who do not conduct much research tend to earn less compensation
than faculty who do. Even if we tried to control for teaching and research emphasis
between campuses, our measures will be crude (such as the Carnegie classification),
and their inclusion in the model will not sufficiently remove the correlation between
the unionization variable and the error term, which leads to bias in the estimate of
the effect of unionization.

Second, OLS assumes that the causal chain of events runs from x to y. Yet the lit-
erature on why faculty choose to unionize indicates that one of the primary drivers is
low compensation. So while we might expect faculty unions to raise faculty salaries
through collective bargaining, a strong case can be made that faculty compensation
also drives unionization. Such simultaneity between the dependent and independent
variables results in endogeneity, just as in the case of omitted variables.

Porter (2013) has argued that state public employee unionization laws can be
considered a valid instrument for faculty unions at an institution, because faculty
at public institutions are public employees. These laws vary in strength across the
country, in terms of the ease in which faculty can form a union and the institution
is required to collectively bargain with the union. Conditional on two covariates,
state political ideology and the strength of state oversight over higher education,
these laws should have a strong, direct effect on unionization and should not affect
faculty compensation other than through unionization. He also demonstrates that
this is a strong instrument (correlation of .58 between state ideology and campus
unionization).

Figure 8.11 compares the results of the two approaches to understanding the
effects of unions on faculty compensation. Two sets of models are estimated.
The first set assumes unionization is exogenous, and uses the rifreg command to
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Fig. 8.11 Unionization and compensation, exogenous and endogenous (IV) quantile regression.
(a) RIF-OLS. (b) Quantile IV

estimate the effect of unionization. Besides a dummy variable indicating unioniza-
tion of the individual faculty member’s campus, the model includes the individual-
level faculty covariates used in the previous models, as well as logged student
enrollment at the institution, logged expenditures per student, Barron’s college
selectivity index, and dummy variables for Carnegie classification as control
variables. The second set of results assumes unionization is endogenous, and
uses the ivqte command, with a binary indicator for weak/strong state public
employee collective bargaining rights as the instrument. The model also includes
two covariates, state political ideology and whether the state had a consolidated
governing board.
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Panel a of the figure contains the RIF-OLS results, which suggests unionization
has a strong, positive effect on faculty compensation. The effects increase until about
the 75th percentile, and then rapidly drop off to zero (no difference between faculty
at unionized and non-unionized institutions). Panel b shows the quantile IV results
using state laws as an instrument. The 95 % confidence intervals bracket almost
the entire distribution, leading to the conclusion that unionization has no effect on
faculty compensation.

As with any IV estimate, care must be made in interpretation of the results.
In an OLS model with a truly exogenous treatment variable (e.g., analysis of an
experiment where college students were randomly assigned to a treatment and
control condition, with perfect compliance), the regression coefficient ˇ can be
interpreted as the average treatment effect – the estimated effect if we randomly
selected students from the population and then administered the treatment. IV
estimates, however, do not have the same interpretation. Instead, they produce what
are known as local average treatment effects, where local refers to the subset of
the population on which the treatment effect is estimated. In the context of IV,
this is the group of units, known as compliers, whose assignment to treatment is
determined by the instrument. In the current example, this means we should not
conclude that unionization has a null effect. Instead, we can conclude that for the
group of institutions whose faculty decide to unionize based on the strength of
state laws, unionization has no effect. For example, we can say little about the
effect of unionization on colleges that would never unionize despite how easy state
public employee union laws may make the collective bargaining process. A very
conservative, religious college may be hostile to unions, for example, and would
always remain non-unionized regardless of state law.

Sensitivity Analysis

The previous analysis used global logistic regression to estimate �.Z/ when
creating the IV weights; in other words, it assumed the default smoothing parameters
h D 1 and � D 1. The locreg command (Fröhlich & Melly, 2010) allows users
to find the optimal smoothing values for the IV estimator, using a leave-one-out
cross-validation approach that seeks the smallest mean squared error. In leave-one-
out cross-validation, values are first chosen for h and �. The sample is then split
into N datasets (the training sets), on which the local logistic regression model is
estimated using all of the sample except for one observation, and the coefficients
from the model are used with values of the independent variables from the remaining
observation (the validation dataset) to make a prediction for Y . The predicted value
is compared to the actual value, and the mean squared error (MSE) is calculated
across the datasets for this pair of smoothing values. The user tries out different sets
of values for the smoothing parameters to find the pair that yields the lowest mean
squared error; these are the optimal values.
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Table 8.11 Search process for optimal values of h and �

First iteration Second iteration Third iteration Fourth iteration

h � MSE h � MSE h � MSE h � MSE

0.2 0:2 0:084307 0:05 0:05 0:073809 0:06 0:01 0:073854 0:1 0 0:069696
0.2 0:5 0:084712 0:05 0:1 0:073813 0:06 0:02 0:073854 0:1 0:0025 0:070971

0.2 0:8 0:084924 0:05 0:15 0:073818 0:06 0:03 0:073855 0:1 0:005 0:071008

1 0:2 0:126978 0:05 0:2 0:073823 0:06 0:04 0:073855 0:1 0:0075 0:071069

1 0:5 0:13043 0:05 0:25 0:073827 0:06 0:05 0:073856 0:1 0:01 0:071155

1 0:8 0:131862 0:1 0:05 0:073693 0:08 0:01 0:073844

1 0:2 0:151678 0:1 0:1 0:073979 0:08 0:02 0:073844

1 0:5 0:152310 0:1 0:15 0:073985 0:08 0:03 0:073844

1 0:8 0:152905 0:1 0:2 0:073992 0:08 0:04 0:073845

0:1 0:25 0:073999 0:08 0:05 0:073845

0:15 0:05 0:082831 0:1 0:01 0:071155
0:15 0:1 0:082858 0:1 0:02 0:071741

0:15 0:15 0:082896 0:1 0:03 0:072719

0:15 0:2 0:082943 0:1 0:04 0:073595

0:15 0:25 0:082997 0:1 0:05 0:073693

0:2 0:05 0:08369 0:12 0:01 0:081329

0:2 0:1 0:083944 0:12 0:02 0:081334

0:2 0:15 0:084158 0:12 0:03 0:081337

0:2 0:2 0:084307 0:12 0:04 0:08134

0:2 0:25 0:084414 0:12 0:05 0:081343

0:25 0:05 0:086121

0:25 0:1 0:086493

0:25 0:15 0:086727

0:25 0:2 0:086883

0:25 0:25 0:086994

This procedure is computationally intensive due to the cross-validation, and even
more so given the large number of pairs of values to be tested. Rather than testing
many values at once, I recommend using smaller sets of values in an iterative process
to narrow down the choices and find the optimal values. For the faculty union
example, I first tested the values .2, 1 and 1 for h and .2, .5, and .8 for �. MSEs
were calculated for each possible pair that could be created from the six values, and
as noted in Table 8.11, the pair (.2,.2) had the lowest MSE (shown in bold). Next,
MSEs were calculated for the values .05 to .25 for both, resulting in the optimal
values of .1 and .05 for this set of numbers. The process was repeated for .06, .08,
.1, and .12 for h and .01, .02, .03, .04, and .05 for �, and once more with .1 for h

and 0, .0025, .005, .0075, and .01 for �, yielding final values of .1 for h and 0 for �.
Table 8.12 shows the results for the faculty union model with the default

smoothing values of 1 for h and 1 for � compared to the optimal values of .1 for
h and 0 for �. For the estimates using the default settings, we would conclude that
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Table 8.12 Effect of faculty unionization on compensation: IV unconditional quantile regression
estimates

Quantiles of y

.10 .25 .50 .75 .90

h D 1 and � D 1 �6,095 �1,622 �1,035 �4,114 �10,060

(3,008)�� (2,684) (4,271) (6,377) (13,008)

h D :1 and � D 0 �12,850 �14,578 �11,600 �7,500 �11,400

(46,586) (29,946) (18,926) (97,642) (75,227)

Note: Cell entries are coefficients, with standard errors in parentheses
**p < 0:05

unions decrease compensation at the 10th percentile, with no statistically significant
differences along the rest of the distribution. For the estimates using the optimal
bandwidths, the coefficients have the same sign as the default estimates, and while
some are much larger in value, none are statistically significant. In this example,
both approaches yield substantively similar results, and we would conclude that
unionization has no effect on faculty compensation.

Discussion

The preceding review of the literature on quantile regression demonstrates the
potential of analyzing distributions instead of means in postsecondary research. The
main drawback to using OLS in applied research is that it only shows us the effect of
independent variables on the mean of y. Quantile regression allows the researcher
to estimate how the entire distribution of an outcome changes given a unit change
in x, rather than just the change in the mean of y. While quantile regression models
generate a much larger set of empirical results compared with OLS, careful use of
tables and graphical presentation of results can easily illustrate how an independent
variables affects the distribution of y.

For researchers seeking to use quantile regression, the first modeling choice they
face is conditional versus unconditional quantile regression. For most postsecondary
applications, conditional quantile regression does not seem to be a useful approach.
It estimates the effect of an independent variable on the conditional distribution of
y, such that the coefficient must be interpreted as a within-group effect, where the
groups are defined by the independent variables used in the model. In general, this
is not the effect that is useful for most evaluation and policy discussions. Instead,
unconditional quantile regression would appear to be the best choice, because it
tells us the effect of x on the unconditional distribution of y. In other words,
if x increases by one unit, how much does the distribution of y change? This
interpretation is similar to how we interpret OLS regression results.

Next, some assumptions must be made about the density of y. While the
choice of kernel typically does not matter, the bandwidth does, and researchers
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should investigate different bandwidths to determine the robustness of their results.
Bootstrapping the standard errors, rather than relying on the default standard errors
estimated by the software, is also recommended.

Whether researchers should use the recentered influence function approach that
assumes exogeneity, or an alternative approach that assumes endogeneity, will
depend on the particular research question. Given the ubiquity of unobservable
selection processes in higher education, not just on the part students and their
families, but also faculty and institutions, endogeneity is a more realistic assump-
tion than exogeneity. Besides instrumental variables, econometricians have been
devising other quantile regression approaches that can handle endogeneity, such as
regression discontinuity quantile regression (Frandsen, Fröhlich, & Melley, 2012).
Work in this area is changing rapidly, so readers are advised to conduct a thorough
literature review before using these techniques.

Further Resources

Conditional Quantile Regression

For readers seeking a short introduction, Koenker and Hallock (2001) provide
an accessible overview of these models and their application in economics while
Buchinsky (1998) goes into more depth, especially regarding estimation issues.
Davino et al. (2014) is a very recent, book-length treatment of conditional quantile
regression and is probably the single-best source for anyone interested in these
models.

Unconditional Quantile Regression

Firpo et al. (2009) describe the RIF-OLS approach in their seminal paper on
unconditional quantile regression, and is required reading for anyone using these
models. Their supplement provides proofs for their main paper, and it is probably
not very useful for most researchers.

Firpo (2007) has proposed another estimator for unconditional quantile treatment
effects under exogeneity. This estimator has been implemented in the ivqte
command, but does not seem to be widely used.

For endogenous regressors, two approaches have been proposed. Fröhlich and
Melly (2013) have developed an IV approach to quantile treatment effects, and
have implemented their estimator in the Stata command ivqte (Fröhlich & Melly,
2010). This command is somewhat complicated, in that it will produce four different
estimators, depending on the syntax used. Their paper in the Stata Journal requires
close reading to correctly use this command.
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Kernel Density Estimators

Kernel density estimators play an important role not only in quantile regression
estimators, but also in the visual display of data, as well as propensity score
matching. Cox (2007) provides an accessible introduction to these estimators, as
does Salgado-Ugarte, Shimizu, and Taniuchi (1993).

Appendix

Below is the Stata syntax used to generate the results in this chapter.
global figures directory

*** Example in Table 8.1 ***
use http://www.ats.ucla.edu/stat/stata/notes/hsb2, clear
sum write, detail
sum write if female==0, detail
sum write if female==1, detail
reg write female
qreg write female
qreg write female, quantile(.25)
replace write=1000 if id==192
reg write female
qreg write female

*** Graphing densities for Fig. 8.6, panel (a) ***
kdensity write, bwidth(1) kernel(gau) legend(off)
graphregion(color(white) lwidth(large)) xtitle
("Writing score") title("")

graph export $figuresnkernel1gau.eps, replace
!epstopdf $figuresnkernel1gau.eps

*** Input faculty salary data ***
use nsopfdata.dta, clear

* Define faculty group for analysis
keep if q1==1 & q2==1 & q3==1 & q5==1 // only instr.
duties, faculty status, full-time

keep if q4==1 | q4==2 // principal activity is teaching
or research

keep if q10==1 | q10==2 | q10==3 // rank of prof, assoc
or asst

* Code independent variables
recode q17a1 (1=1) (0 2/7=0), gen(phd)

http://www.ats.ucla.edu/stat/stata/notes/hsb2
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recode q71 (2=1) (1=0), gen(female)
gen age=2003-q72
recode q10 (1=1) (2 3=0) (0 4 5 6=.), gen(full)
recode q10 (2=1) (1 3=0) (0 4 5 6=.), gen(assoc)
rename q74b asian
rename q74c black
gen native=0
replace native=1 if q74a==1 | q74d==1
rename q73 latino
rename q52ba articles
rename q52bd books
rename q16cd2 disc
xi i.disc // discipline dummy vars

* Dependent variable
rename q66a basesalary
drop if basesalary<20000 // seems odd to be FT prof and
making less than 20K

* Create analytic sample
reg basesalary female asian black latino native full
assoc articles books _Idisc_2-_Idisc_32

keep if e(sample)

*** OLS-RIF results for Table 8.5 ***
reg basesalary female asian black latino native full
assoc articles books _Idisc_2-_Idisc_32

estimate store ols
foreach i in 10 25 50 75 90
rifreg basesalary female asian black latino native full
assoc articles books _Idisc_2-_Idisc_32,
quantile(.‘i’)

estimates store q‘i’
estimates table ols q10 q25 q50 q75 q90,
drop(_Idisc_2-_Idisc_32) b(%9.0f) se se(%9.0f)

*** bootstrapping SEs for Table 8.6 ***
foreach i in 10 25 50 75 90
bootstrap, reps(100) seed(642014): rifreg basesalary
female asian black latino native full assoc articles
books _Idisc_2-_Idisc_32, quantile(.‘i’)

estimates store q‘i’
estimates table q10 q25 q50 q75 q90,
drop(_Idisc_2-_Idisc_32) b(%9.0f) se se(%9.0f)

*** Testing sensitivity of results in Table 8.7 ***
* Gaussian
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foreach i in 10 25 50 75 90
rifreg basesalary female asian black latino native full
assoc articles books _Idisc_2-_Idisc_32, quantile(.‘i’)

estimates store silverq‘i’
foreach i in 10 25 50 75 90
rifreg basesalary female asian black latino native full
assoc articles books _Idisc_2-_Idisc_32, quantile(.‘i’)
width(5192)

estimates store hardleq‘i’
foreach i in 10 25 50 75 90
rifreg basesalary female asian black latino native full
assoc articles books _Idisc_2-_Idisc_32, quantile(.‘i’)
width(3802)

estimates store scottq‘i’
estimates table silverq10 silverq25 silverq50 silverq75
silverq90, drop(_Idisc_2-_Idisc_32) b(%9.0f)
se se(%9.0f)

estimates table hardleq10 hardleq25 hardleq50 hardleq75
hardleq90, drop(_Idisc_2-_Idisc_32) b(%9.0f)
se se(%9.0f)

estimates table scottq10 scottq25 scottq50
scottq75 scottq90, drop(_Idisc_2-_Idisc_32) b(%9.0f)
se se(%9.0f)

* to see results with Epanechnikov and uniform
distributions, just add kernop(ep) or kernop(rec) as
options

*** Conditional QR results for Table 8.8 ***
foreach i in 10 25 50 75 90
qreg basesalary female asian black latino native full
assoc articles books _Idisc_2-_Idisc_32, quantile(.‘i’)

estimates store q‘i’
estimates table q10 q25 q50 q75 q90,
drop(_Idisc_2-_Idisc_32) b(%9.0f) se se(%9.0f)

*** Graph unconditional QR results for gender (Fig. 8.7)

***
* This set of code can be used to create the other
figures in the chapter

matrix quantiles = J(1,3,.) // create blank matrix to
add model results to

matrix colnames quantiles = B SE Q
matrix identity=J(1,1,1) // to add to counter matrix
per loop

matrix counter=J(1,1,0) // will save quatiles for
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qraphing
forvalues i=.01(.01)1
matrix counter=counter+identity
qui:rifreg basesalary female asian black latino native
full assoc articles books _Idisc_2-_Idisc_32,
quantile(‘i’)

matrix table=r(table) // create a matrix of results for
each rd (have to rename matrix)

matrix b_se=table[1..2,1..1]’ // grab B and SE and
transpose so they are in column format rather than row

matrix temp=b_se,counter // add quantile as a column
matrix quantiles=quantilesntemp //add most recent set
of model results to matrix

matrix quantiles2=quantiles[2..100,1..3] // drop missing
first row

clear svmat quantiles2, names(col) // converts matrix
of results to dataset for graphing

gen ciplus=B+1.96*SE
gen cineg=B-1.96*SE
graph twoway connected B Q, msymbol(none) legend(off)
graphregion(color(white)) yline(-5540, lpattern
(longdash)) lwidth(medthick) xtitle("Quantiles of
salary") ytitle(Male-female differential ($)) ||
connected ciplus Q, msymbol(none) lpattern(dash) ||
connected cineg Q, msymbol(none) lpattern(dash)

graph export $figuresngender.eps, replace
!epstopdf "$figuresngender.eps

*** Finding optimal bandwidths for ivqte command (Table
8.11) ***

locreg facultyunion, logit bandwidth(.2 1 .) lambda(.2
.5 .8) continuous(citi6008) dummy(gov_cons)

locreg facultyunion, logit bandwidth(.05 .1 .15 .2 .25)
lambda(.05 .1 .15 .2 .25) continuous(citi6008)
dummy(gov_cons)

locreg facultyunion, logit bandwidth(.06 .08 .1 .12)
lambda(.01 .02 .03 .04 .05) continuous(citi6008)
dummy(gov_cons)

locreg facultyunion, logit bandwidth(.1) lambda(0 .0025
.005 .0075 .01) continuous(citi6008) dummy(gov_cons)

*** IV QR estimates for Table 8.12 **
foreach i in 10 25 50 75 90
ivqte basesalary (facultyunion = statelaws) , variance
quantiles(.‘i’) continuous(citi6008) dummy(gov_cons)
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foreach i in 10 25 50 75 90
ivqte basesalary (facultyunion = statelaws) , variance
quantiles(.‘i’) continuous(citi6008) dummy(gov_cons)
bandwidth(.1) lambda(0)
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